πŸ“˜
Lif31up's Blog
  • Welcome! I'm Myeonghwan
  • How to Read the Pages
  • Fundamental Machine Learning
    • Foundational Work of ML: Linear/Logistic Regression
    • Early-stage of AI: Perceptron and ADALINE
    • What is Deep Learning?: Artificial Neural Network to Deep Neural Network
    • * Challenges in Training Nerual Network
  • Meta Learning
    • Overview on Meta Learning
    • Prototypical Networks for Few-shot Learning
    • Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
  • Natural Language Process
    • Bag-of-Words
  • Actionale AI
    • * Overview on Actionable AI
  • Front-end Development
    • Overview on Front-end Development
    • Learning React Basic
      • React Component: How They are Rendered and Behave in Browser
      • State and Context: A Key Function to Operate the React Application
      • Design Pattern for Higher React Programming
  • Songwriting
    • A Comprehensive Guide to Creating Memorable Melodies through Motif and Phrasing
  • Sound Engineering
    • How to Install and Load Virtual Studio Instruments
    • A Guide to Audio Signal Chains and Gain Staging
    • Equalizer and Audible Frequency: How to Adjust Tone of the Signal
    • Dynamic Range: the Right Way to Compress your Sample
    • Acoustic Space Perception and Digital Reverberation: A Comprehensive Analysis of Sound Field Simulat
  • Musical Artistry
    • What is Artistry: in Perspective of Modern Pop/Indie Artists
    • Visualizing as Musical Context: Choose Your Aesthetic
    • Analysis on Modern Personal Myth and How to Create Your Own
    • Instagram Management: Business Approach to Your Social Account
  • Art Historiography
    • Importance of Art Historiography: Ugly and Beauty Across Time and Space
    • Post-internet Art, New Aesthetic and Post-Digital Art
    • Brutalism and Brutalist Architecture
Powered by GitBook
On this page
  • Formulation
  • Algorithm
  1. Meta Learning

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

PreviousPrototypical Networks for Few-shot LearningNextBag-of-Words

Last updated 29 days ago

MAML(Model-Agnostic Meta-Learning)은 퓨 μƒ· λŸ¬λ‹ λͺ¨λΈμ˜ ν•œ μ’…λ₯˜λ‘œ, 적은 μ˜ˆμ‹œλ§ŒμœΌλ‘œλ„ 문제λ₯Ό ν•΄κ²°, μƒˆλ‘œμš΄ μž‘μ—…μ— λŒ€ν•œ λΉ λ₯Έ 적응λ ₯을 μ„±μ·¨ν•˜λŠ” λ°©λ²•μœΌλ‘œ μ†Œκ°œλ˜μ—ˆμŠ΅λ‹ˆλ‹€. 기쑴의 경사 ν•˜κ°•λ²•κ³Ό ν˜Έν™˜λ˜μ–΄ κ°•ν™” ν•™μŠ΅, νšŒκ·€, λΆ„λ₯˜μ™€ 같은 전톡적인 λ¨Έμ‹ λŸ¬λ‹ λ¬Έμ œμ— ν­λ„“κ²Œ μ μš©ν•  수 μžˆλ‹€κ³  ν•©λ‹ˆλ‹€.

Model-Agnosticμ΄λž€ ν‘œν˜„ 덕뢄에 μ–΄λ–€ μž‘μ—…μ— λŒ€ν•΄μ„œλ„ 잘 μž‘λ™ν•  κ²ƒμ΄λΌλŠ” μ‹μ˜ 인상을 쀄 수 μžˆμŠ΅λ‹ˆλ‹€. ν•˜μ§€λ§Œ μ‹€μ œλ‘œλŠ” MAML은 μž‘μ—… κ°„ 뢄포가 μœ μ‚¬ν•œ κ²½μš°μ—λ§Œ μΌλ°˜ν™” μ„±λŠ₯이 λ†’μŠ΅λ‹ˆλ‹€. 이λ₯Ό μž‘μ—… κ°„ λ³€λ™λŸ‰(task variance)κ°€ 적닀 ν‘œν˜„ν•©λ‹ˆλ‹€.

μΈκ°„μ˜ μ§€λŠ₯은 ν•œ μ˜ˆμ‹œλ₯Ό 톡해 νŒ¨ν„΄μ„ μ •ν˜•ν™”ν•˜μ—¬ λ‹€λ₯Έ μƒν™©μ—μ„œλ„ μœ μ‚¬ν•œ μž‘μ—…μ„ μˆ˜ν–‰ν•  수 μžˆμŠ΅λ‹ˆλ‹€. 인곡지λŠ₯ μ—­μ‹œ μ΄λŸ¬ν•œ λŠ₯λ ₯을 κ°–μΆ”μ–΄μ•Ό ν•œλ‹€λŠ” μƒκ°μ—μ„œ MAML이 μ‹œμž‘λ˜μ—ˆμŠ΅λ‹ˆλ‹€. MAML은 κΈ°μ‘΄ 메타 ν•™μŠ΅μ΄ μΆ”κ΅¬ν–ˆλ˜ ν•¨μˆ˜ μ΅œμ ν™”λ‚˜ ν•™μŠ΅μœ¨μ— λŒ€ν•œ 갱신법에 λŒ€ν•œ ν•™μŠ΅κ³ΌλŠ” λ‹€λ₯Έ 접근법을 μ·¨ν•©λ‹ˆλ‹€. 특히, ν•™μŠ΅μœ¨μ΄λ‚˜ μ΄ˆλ§€κ°œλ³€μˆ˜ μ΅œμ ν™”μ™€ 직접적인 연관성을 κ°–μ§€ μ•ŠλŠ”λ‹€λŠ” μ μ—μ„œ κ·ΈλŸ¬ν•©λ‹ˆλ‹€.

Formulation

MAML μ•Œκ³ λ¦¬μ¦˜μ€ 문제 상황을 μ„œμˆ ν•˜κΈ° μœ„ν•΄ μž‘μ—… TTTλ₯Ό λ‹€μŒκ³Ό 같이 μˆ˜μ‹ν™”ν•©λ‹ˆλ‹€.

T={L(x1,a1,…,xH,aH),q(x1),q(xt+1∣xt,at),H}\mathcal{T} = \{ \mathcal{L}(x_1, a_1, …, x_H, a_H), q(x_1), q(x_{t+1} | x_t, a_t), H \}T={L(x1​,a1​,…,xH​,aH​),q(x1​),q(xt+1β€‹βˆ£xt​,at​),H}
  • HHHλŠ” 회차(episode length)둜 μ‹œκ°„μ  μˆœμ„œλ₯Ό μ˜λ―Έν•©λ‹ˆλ‹€.

  • λͺ¨λΈ fffλŠ” κ΄€μ°°κ°’ xxxλ₯Ό μž…λ ₯ λ°›μ•„ aaaλ₯Ό 좜λ ₯ν•©λ‹ˆλ‹€.

  • L\mathcal{L}L은 μ†μ‹€ν•¨μˆ˜μž…λ‹ˆλ‹€. q(x1)q(x_1)q(x1​)의 뢄포가 λ°˜μ˜λ©λ‹ˆλ‹€.

  • q(x1)q(x_1)q(x1​)은 초기 κ΄€μ°°κ°’μž…λ‹ˆλ‹€.

  • L(x1,a1,…,xH,aH)β†’R\mathcal{L}(x_1, a_1, …, x_H, a_H) \rightarrow \mathbb{R}L(x1​,a1​,…,xH​,aH​)β†’R

  • q(x_{t+1} | x_t, a_t)$λŠ” $x_t$, $a_tq(xt+1∣xt,at)q(x_{t+1} | x_t, a_t)q(xt+1β€‹βˆ£xt​,at​)λŠ” xtx_txt​, ata_tat​에 μ—°κ΄€λœ 전이뢄포(transition distribution)μž…λ‹ˆλ‹€.

μœ„μ˜ μ‹œλ‚˜λ¦¬μ˜€μ—μ„œ λͺ¨λΈμ€ p(T)p(T)p(T)에 λŒ€ν•œ 뢄포에 λŒ€ν•΄ 적응함을 λͺ©ν‘œλ‘œ ν•©λ‹ˆλ‹€. 이λ₯Ό 케이-μƒ· ν”„λ ˆμž„μ›Œν¬λ‘œ μ„€λͺ…ν•  수 μžˆμŠ΅λ‹ˆλ‹€: λͺ¨λΈ f(x)f(x)f(x)은 TiT_iTi​λ₯Ό μˆ˜ν–‰ν•˜λŠ”λ° μžˆμ–΄ KKK 만큼의 ν‘œλ³Έ qiq_iqi​λ₯Ό μ‚¬μš©ν•©λ‹ˆλ‹€. 이와 fff κ°„μ˜ λ°˜μ‘ LTi\mathcal{L}_{T_i}LTiβ€‹β€‹λ‘œ TiT_iTi​λ₯Ό μˆ˜ν–‰ν•  수 μžˆμ–΄μ•Ό ν•©λ‹ˆλ‹€.

일반적인 퓨 μƒ· ν•™μŠ΅ κ΄€μ μ—μ„œ λ³Έλ‹€λ©΄ 각 μž‘μ—… λΆ„ν¬λŠ” μ„œν¬νŠΈ μ„ΈνŠΈ, 전체 λΆ„ν¬λŠ” 쿼리 μ„ΈνŠΈλ‘œ 생각될 수 μžˆμŠ΅λ‹ˆλ‹€.

Algorithm

MAML은 ν•œ 루프에 또 ν•˜λ‚˜μ˜ 루프λ₯Ό κ°μ‹ΈλŠ” λ©”μ»€λ‹ˆμ¦˜μ„ κ°€μ§€κ³ μžˆμŠ΅λ‹ˆλ‹€. 이 μ•Œκ³ λ¦¬μ¦˜μ„ μ„€λͺ…ν•˜κΈ° μœ„ν•΄ μ΄λ„ˆλ£¨ν”„, μ•„μš°ν„°λ£¨ν”„μ™€ μ§€μ—­ λ§€κ°œλ³€μˆ˜ ΞΈi\theta_iΞΈi​, 메타 λ§€κ°œλ³€μˆ˜ ΞΈ\thetaθ에 λŒ€ν•΄ 생각해볼 수 μžˆμŠ΅λ‹ˆλ‹€:

  • μš”κ΅¬ 사항: p(T)p(T)p(T)β€”μž‘μ—…μ— λŒ€ν•œ 뢄포, Ξ±\alphaΞ±, Ξ²\betaΞ²: 초-λ§€κ°œλ³€μˆ˜μ— λŒ€ν•œ 발자ꡭ 크기

    • Ξ±\alphaΞ±λŠ” ν•™μŠ΅μœ¨, 발자ꡭ ν¬κΈ°μž…λ‹ˆλ‹€.

    • Ξ²\betaΞ²λŠ” ν•™μŠ΅μœ¨, 발자ꡭ ν¬κΈ°μž…λ‹ˆλ‹€.

  1. ΞΈ\thetaΞΈλ₯Ό λ¬΄μž‘μœ„λ‘œ μ‹œμž‘ν•œλ‹€.

  2. λλ‚˜κΈ° μ „κΉŒμ§€ λ‹€μŒμ„ λ°˜λ³΅ν•œλ‹€.

    1. 업무에 λŒ€ν•œ μƒ˜ν”Œ Ti,...,p(T)T_i, ..., p(T)Ti​,...,p(T)을 λ°°μΉ˜ν•œλ‹€.

    2. λͺ¨λ“  TiT_iTi​에 λŒ€ν•΄ λ‹€μŒμ„ ν•œλ‹€.

  3. KKK ν‘œλ³Έμ— μ—°κ΄€λœ βˆ‡ΞΈLTi(fΞΈ)\nabla_{\theta}\mathcal{L}{T_i}(f{\theta})βˆ‡ΞΈβ€‹LTi​(fΞΈ)을 평가해 κ·ΈλΌλ””μ–ΈνŠΈλ₯Ό λ§€κ°œλ³€μˆ˜μ— λ°˜μ˜ν•œλ‹€: ΞΈβ€²i=ΞΈβˆ’Ξ±βˆ‡ΞΈLTi(fΞΈ)\theta'i = \theta - \alpha\nabla{\theta}\mathcal{L}{T_i}(f{\theta})ΞΈβ€²i=ΞΈβˆ’Ξ±βˆ‡ΞΈLTi​(fΞΈ)

  4. ΞΈβ†’ΞΈβˆ’Ξ²βˆ‡ΞΈβˆ‘Ti,…,p(T)LTi(fΞΈiβ€²)\theta \rightarrow \theta - \beta\nabla_{\theta}\sum_{T_i, …, p(T)} \mathcal{L}_{T_i}(f_{\theta'_{i}})ΞΈβ†’ΞΈβˆ’Ξ²βˆ‡ΞΈβ€‹βˆ‘Ti​,…,p(T)​LTi​​(fΞΈi′​​)둜 κ°±μ‹ ν•œλ‹€.

  • μ΄λ„ˆλ£¨ν”„(2)에선 각 κ°œλ³„ μž‘μ—…μ— μ—°κ΄€λ˜λŠ” μ§€μ—­ λ§€κ°œλ³€μˆ˜ ΞΈi\theta_iΞΈi​λ₯Ό κ°±μ‹ ν•©λ‹ˆλ‹€.

  • μ•„μš°ν„°λ£¨ν”„(4)λŠ” μ΄λ„ˆλ£¨ν”„ 이후에 μž‘λ™ν•©λ‹ˆλ‹€. μ•žμ„œ κ°±μ‹ λœ λ§€κ°œλ³€μˆ˜λ₯Ό ν†΅ν•œ λͺ¨λ“  μž‘μ—…μ˜ μ†μ‹€μ˜ 총합에 κ΄€λ ¨ν•˜μ—¬ 메타 λ§€κ°œλ³€μˆ˜ ΞΈ\thetaΞΈλ₯Ό κ°±μ‹ ν•©λ‹ˆλ‹€.

μ—¬κΈ°μ„œ μ§€μ—­ λ§€κ°œλ³€μˆ˜μ™€ 메타 λ§€κ°œλ³€μˆ˜λŠ” λͺ¨λ‘ 같은 λŒ€μƒμž…λ‹ˆλ‹€. MAML은 이λ₯Ό 각각의 κ΄€μ μ˜ μ„œλ‘œ λ‹€λ₯Έ κ°œλ…μœΌλ‘œ μ„€λͺ…ν•˜λ € ν•©λ‹ˆλ‹€.

이런 λ©”μ»€λ‹ˆμ¦˜μ€ μ „μ΄ν•™μŠ΅κ³Ό μƒμΆ©λ˜λŠ” κ°œλ…μ΄ μžˆμ§€λ§Œ μ‹€μ œλ‘œ 이 λ‘˜μ€ λ‹€λ₯Έ 접근을 κ°€μ§€κ³  μžˆμŠ΅λ‹ˆλ‹€:

  • μ „μ΄ν•™μŠ΅μ€ 이미 ν•™μŠ΅λœ κ°€μ€‘μΉ˜λ₯Ό μƒˆ μž‘μ—…μ— λŒ€ν•΄ 적합함을 λͺ©μ μœΌλ‘œ ν•©λ‹ˆλ‹€.

  • MAML은 μƒˆ μž‘μ—…μ— λŒ€ν•œ 적합 λŒ€μ‹  κ·Έ μž‘μ—…μ„ λΉ λ₯΄κ²Œ μˆ˜ν–‰ν•˜λŠ” κ°€μ€‘μΉ˜λ₯Ό ν•™μŠ΅ν•˜λŠ” κ±Έ λͺ©μ μœΌλ‘œ ν•©λ‹ˆλ‹€.

ν•΄λ‹Ή λ‚΄μš©μ€ 을 기반으둜 ν•©λ‹ˆλ‹€.

μ œκ°€ 직접 μž‘μ„±ν•œ λ₯Ό ν™•μΈν•˜μ„Έμš”!

이 λ…Όλ¬Έ
κ΅¬ν˜„ μ½”λ“œ