๐Ÿ“˜
Lif31up's Blog
  • Welcome! I'm Myeonghwan
  • How to Read the Pages
  • Fundamental Machine Learning
    • Foundational Work of ML: Linear/Logistic Regression
    • Early-stage of AI: Perceptron and ADALINE
    • What is Deep Learning?: Artificial Neural Network to Deep Neural Network
    • Challenges in Training Deep Neural Network and the Latest Solutions
  • Modern AI Systems: An In-depth Guide to Cutting-edge Technologies and Applications
  • Few Shot Learning
    • Overview on Meta Learning
    • Prototypical Networks for Few-shot Learning
    • Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
  • Natural Language Process
    • Tokenization and Stemming, Lemmatization, Stop-word Removal: Foundational Works of NLP
    • Attention Mechanism: The Core of Modern AI
  • Front-end Development
    • Overview on Front-end Development
    • Learning React Basic
      • React Component: How They are Rendered and Behave in Browser
      • State and Context: A Key Function to Operate the React Application
      • Design Pattern for Higher React Programming
  • Songwriting
    • A Comprehensive Guide to Creating Memorable Melodies through Motif and Phrasing
  • Sound Engineering
    • How to Install and Load Virtual Studio Instruments
    • A Guide to Audio Signal Chains and Gain Staging
    • Equalizer and Audible Frequency: How to Adjust Tone of the Signal
    • Dynamic Range: the Right Way to Compress your Sample
    • Acoustic Space Perception and Digital Reverberation: A Comprehensive Analysis of Sound Field Simulat
  • Musical Artistry
    • What is Artistry: in Perspective of Modern Pop/Indie Artists
    • Visualizing as Musical Context: Choose Your Aesthetic
    • Analysis on Modern Personal Myth and How to Create Your Own
    • Instagram Management: Business Approach to Your Social Account
  • Art Historiography
    • Importance of Art Historiography: Ugly and Beauty Across Time and Space
    • Post-internet Art, New Aesthetic and Post-Digital Art
    • Brutalism and Brutalist Architecture
Powered by GitBook
On this page
  • Multi-modal Learning
  • Transformers Architecture/Transformers
  • Transfer Learning
  • Federated Learning
  • Actionable AI

Modern AI Systems: An In-depth Guide to Cutting-edge Technologies and Applications

ํ˜„๋Œ€ ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์€ ๋‹ค์–‘ํ•œ ์ฒจ๋‹จ ๊ธฐ์ˆ ๊ณผ ์ ‘๊ทผ ๋ฐฉ์‹์„ ํ†ตํ•ด ๋ฐœ์ „ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฌธ์„œ์—์„  ํ˜„๋Œ€ ์ธ๊ณต์ง€๋Šฅ์—์„œ ๊ฐ€์žฅ ์ฃผ์š”ํ•œ ๊ธฐ์ˆ  ๋ฐ ์—ฐ๊ตฌ ๋ถ„์•ผ์— ๋Œ€ํ•ด ์ƒ์„ธํžˆ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

  • ๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ ํ•™์Šต: ์—ฌ๋Ÿฌ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ(์ด๋ฏธ์ง€, ํ…์ŠคํŠธ, ์Œ์„ฑ ๋“ฑ)๋ฅผ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•˜๊ณ  ์ดํ•ดํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.

  • ํŠธ๋žœ์Šคํฌ๋จธ: ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์™€ ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜์ž…๋‹ˆ๋‹ค.

  • ์ „์ด ํ•™์Šต: ํ•œ ๋„๋ฉ”์ธ์—์„œ ํ•™์Šต๋œ ์ง€์‹์„ ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์— ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์ž…๋‹ˆ๋‹ค.

  • ์—ฐํ•ฉ ํ•™์Šต: ๋ฐ์ดํ„ฐ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณด์กดํ•˜๋ฉด์„œ ๋ถ„์‚ฐ๋œ ๋ฐ์ดํ„ฐ๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์ž…๋‹ˆ๋‹ค.

  • ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ AI: ๋ถ„์„์„ ๋„˜์–ด ๊ตฌ์ฒด์ ์ธ ํ–‰๋™ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๋Š” ์˜์‚ฌ๊ฒฐ์ • ์ง€์› ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.


Multi-modal Learning

๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ ํ•™์Šต(multi-modal learning)์€ ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ(modality) ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ธฐ๊ณ„ํ•™์Šต ๋ชจ๋ธ์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค.

  • ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์‚ฌ์ง„๊ณผ ํ…์ŠคํŠธ๋ฅผ ํ•จ๊ป˜ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋„๋ก ์„ค๊ณ„๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ๋น„๋””์˜ค ์ƒ์„ฑ ๋ชจ๋ธ์€ ๋‹จ์ˆœํ•œ ๋น„๋””์˜ค๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ž๋ง‰, ์˜์ƒ, ํ‘œ์ • ์ •๋ณด ๋“ฑ์˜ ์ถ”๊ฐ€์ ์ธ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

  • ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ๋Š” ์นด๋ฉ”๋ผ๋ฅผ ํ†ตํ•œ ์‹œ๊ฐ ์ •๋ณด, ๋ผ์ด๋‹ค๋ฅผ ํ†ตํ•œ ๊ฑฐ๋ฆฌ ์ธก์ •, ํ˜„์žฌ ์†๋„ ๋“ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ ํ•™์Šต์€ ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๋“ค์ด ์กฐํ•ฉ๋˜๋Š” ๋ฐฉ์‹์— ๋”ฐ๋ผ ํฌ๊ฒŒ ๋„ค ๊ฐ€์ง€๋กœ ๋ถ„๋ฅ˜๋ฉ๋‹ˆ๋‹ค.

  • ์ดˆ๊ธฐ ์œตํ•ฉ(early fusion) ๋˜๋Š” ํ”ผ์ณ ๋‹จ๊ณ„ ์œตํ•ฉ(feature level fusion): ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋‹ฌ์˜ ์ž…๋ ฅ๋“ค์„ ํ•˜๋‚˜๋กœ ์œตํ•ฉํ•˜์—ฌ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.

  • ํ›„๊ธฐ ์œตํ•ฉ(late fusion) ๋˜๋Š” ์˜์‚ฌ ๋‹จ๊ณ„ ์œตํ•ฉ(decision level fusion): ๊ฐ ๋ชจ๋‹ฌ๋ณ„๋กœ ๊ฐœ๋ณ„ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•œ ํ›„, ์ด๋“ค์˜ ์˜ˆ์ธก์„ ์ข…ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

  • ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์œตํ•ฉ(hybrid/intermediate fusion): ์ดˆ๊ธฐ์™€ ํ›„๊ธฐ ์œตํ•ฉ์„ ๊ฒฐํ•ฉํ•œ ๋ฐฉ์‹์œผ๋กœ, ์—ฌ๋Ÿฌ ์ธต์— ๊ฑธ์ณ ๋ชจ๋‹ฌ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์ด ์ผ์–ด๋‚˜๋„๋ก ์„ค๊ณ„๋ฉ๋‹ˆ๋‹ค.

  • ํฌ๋กœ์Šค ๋ชจ๋‹ฌ ํ•™์Šต(cross-modal learning): ํ•˜๋‚˜์˜ ๋ชจ๋‹ฌ์ด ๋‹ค๋ฅธ ๋ชจ๋‹ฌ์„ ๋ณด์กฐํ•˜๋Š” ์—ญํ• ์„ ํ•˜๋„๋ก ์„ค๊ณ„๋ฉ๋‹ˆ๋‹ค.

์‹ค์ œ ์ ์šฉ ์‚ฌ๋ก€
  • CLIP, DALLE, Florence, Whisper, BEiT-3, GPT-4V

Transformers Architecture/Transformers

ํŠธ๋žœ์Šคํฌ๋จธ์Šค(transformers) ๋˜๋Š” ํŠธ๋žœ์Šคํฌ๋จธ์Šค ๊ตฌ์กฐ(transformers architecture)๋Š” ์…€ํ”„ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์—ฐ์† ๋ฐ์ดํ„ฐ๋ฅผ ๋ณ‘๋ ฌ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ, ์ปดํ“จํ„ฐ ๋น„์ „, ๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ ๊ณผ์ œ๋ฅผ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ‰๊ฐ€๋ฐ›์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ํ˜„๋Œ€์˜ ๋ชจ๋ธ์€ ๋” ํ™•์žฅ์„ฑ์ด ๋†’๊ณ  ๋น ๋ฅธ ์„ฑ๋Šฅ์„ ๊ฐ€์ง€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

  • ์…€ํ”„ ์–ดํ…์…˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜(self-attention mechanism)์€ ์ž…๋ ฅ์˜ ๊ฐ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ์ค‘์š”๋„(attention/importance of the part)๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ๊ฐ€์ค‘์น˜๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์€ ๋ฌธ์žฅ ๋‚ด ๋‹จ์–ด๋“ค์ด ์„œ๋กœ ์–ด๋–ป๊ฒŒ ์—ฐ๊ด€๋˜๋Š”์ง€๋ฅผ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

  • ๋ฉ€ํ‹ฐ ํ—ค๋“œ ์–ดํ…์…˜(multi head attention)์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์…€ํ”„ ์–ดํ…์…˜ ์ธต(self-attention layer)์„ ๋ณ‘๋ ฌ๋กœ ๋ฐฐ์น˜ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ด€๊ณ„๋ฅผ ํฌ์ฐฉํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ํ•œ ์–ดํ…์…˜ ์ธต์€ ๋™์‚ฌ์—, ๋‹ค๋ฅธ ์ธต์€ ๋ชฉ์ ์–ด์— ์ฃผ๋ชฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ์•ž์„  ๋ฐฉ์‹์€ ๋‹จ์–ด์˜ ์—ฐ์†์„ฑ ์ •๋ณด๋ฅผ ์žƒ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํฌ์ง€์…”๋„ ์—”์ฝ”๋”ฉ(positional encoding)์€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฝ”์‚ฌ์ธ/์‚ฌ์ธ ํ•จ์ˆ˜๋กœ ์ƒ์„ฑ๋œ ์œ„์น˜ ์ •๋ณด๋ฅผ ์ž…๋ ฅ์— ์ถ”๊ฐ€ํ•˜๋Š” ์ฒ˜๋ฆฌ ๊ณผ์ •์ž…๋‹ˆ๋‹ค.

  • ์—”์ฝ”๋”-๋””์ฝ”๋” ๊ตฌ์กฐ(encoder-decoder structure): ์—”์ฝ”๋”๋Š” ์ž…๋ ฅ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋‹จ๊ณ„์ด๋ฉฐ, ๋””์ฝ”๋”๋Š” ์ฒ˜๋ฆฌ๋œ ์ •๋ณด๋ฅผ ์ ์ ˆํ•œ ์ถœ๋ ฅ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.

ํŠธ๋žœ์Šคํฌ๋จธ์Šค ์ด์ „์—๋Š” RNN, LSTM, CNN ๋“ฑ์ด ์—ฐ์† ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. RNN๊ณผ LSTM์€ ๊ธด ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์œผ๋ฉฐ, CNN์€ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์—๋Š” ํƒ์›”ํ–ˆ์œผ๋‚˜ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ์—๋Š” ํšจ๊ณผ์ ์ด์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.

ํŠธ๋žœ์Šคํฌ๋จธ๋ผ๋Š” ์šฉ์–ด๋Š” ์—ฐ์† ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋” ๋„“์€ ์˜๋ฏธ์˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๋ชจ๋“ˆ ์ „๋ถ€๋ฅผ ์ง€์นญํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.

์‹ค์ œ ์ ์šฉ ์‚ฌ๋ก€
  • ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ: GPT-4, BERT, T5

  • ์ปดํ“จํ„ฐ ๋น„์ „: ViT

  • ๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ: DALLE

Transfer Learning

์ „์ด ํ•™์Šต(transfer learning)์€ ํ•œ ์ž‘์—…์„ ์œ„ํ•ด ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ ๋‹ค๋ฅธ ์ž‘์—…์— ์žฌ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์‹œ๊ฐ„์ด ์ œํ•œ๋œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ์žฌ์‚ฌ์šฉ์„ฑ์„ ๋†’์ด๊ฑฐ๋‚˜ ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ํ™œ์šฉ๋ฉ๋‹ˆ๋‹ค.

  • ์‚ฌ์ „ ํ•™์Šต(pre-training) ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ธ์ด ๊ด‘๋ฒ”์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ›ˆ๋ จ๋˜์–ด ์ผ๋ฐ˜์ ์ธ ํŠน์ง•๋“ค์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

  • ์ „์ด ๋ฐ ํŒŒ์ธ ํŠœ๋‹(transfer & fine-tuning) ๋‹จ๊ณ„์—์„œ๋Š” ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์ƒˆ๋กœ์šด ์ž‘์—…์— ์ ์šฉํ•˜๋ฉฐ, ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ๋ฐฉ์‹์œผ๋กœ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

    • ์˜ต์…˜ 1: ๋งˆ์ง€๋ง‰ ๊ณ„์ธต๋งŒ ๊ต์ฒดํ•˜์—ฌ ์žฌํ•™์Šต์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

    • ์˜ต์…˜ 2: ์ „์ฒด ๊ณ„์ธต์„ ๋Œ€์ƒ์œผ๋กœ ์žฌํ•™์Šต์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

๊ธฐ์กด์˜ ๋ชจ๋ธ์ด ์™„์ „ํžˆ ์ดˆ๊ธฐํ™”๋œ ์„ค์ •์„ ๊ฐ€์ง€๊ณ  ํ•™์Šต๋˜๋Š” ๊ฒƒ๊ณผ ๋‹ค๋ฅด๊ฒŒ ์ „์ดํ•™์Šต์€ ์ด๋ฏธ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ ์ƒˆ ์ง€์‹์— ์—ฎ์œผ๋ ค ํ•ฉ๋‹ˆ๋‹ค.

์‹ค์ œ ์ ์šฉ ์‚ฌ๋ก€
  • ์ปดํ“จํ„ฐ ๋น„์ „: VGG, ResNet, EfficientNet

  • ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ: BERT, GPT, T5

  • ๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ: CLIP, DALLE

Federated Learning

์—ฐํ•ฉ ํ•™์Šต(federated learning)์€ ํƒˆ์ค‘์•™ํ™”๋ฅผ ํ•ต์‹ฌ์œผ๋กœ ํ•˜๋Š” ๋จธ์‹  ๋Ÿฌ๋‹ ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ ๊ธฐ๊ธฐ๋‚˜ ์กฐ์ง์ด ์›๋ณธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณต์œ ํ•˜์ง€ ์•Š๊ณ ๋„ ํ•จ๊ป˜ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์ค‘์•™ ์„œ๋ฒ„๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•˜๋Š” ๋Œ€์‹ , ๋ชจ๋ธ์ด ๊ฐ ๊ธฐ๊ธฐ๋กœ ์ „์†ก๋˜์–ด ๋กœ์ปฌ์—์„œ ํ•™์Šต๋ฉ๋‹ˆ๋‹ค.

  1. ์ดˆ๊ธฐํ™” ๋‹จ๊ณ„(initialization): ์ค‘์•™ ์„œ๋ฒ„๊ฐ€ ์ „์—ญ ๋ชจ๋ธ์„ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค.

  2. ๋กœ์ปฌ ํ•™์Šต(local training): ์„œ๋ฒ„๊ฐ€ ์ฐธ์—ฌ ๊ธฐ๊ธฐ๋“ค์— ๋ชจ๋ธ์„ ์ „์†กํ•˜๋ฉด, ๊ฐ ๊ธฐ๊ธฐ๋Š” ์ž์‹ ์˜ ๋กœ์ปฌ ๋ฐ์ดํ„ฐ๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

  3. ๋ชจ๋ธ ์—…๋ฐ์ดํŠธ(model updates without data): ๊ธฐ๊ธฐ๋“ค์€ ์›๋ณธ ๋ฐ์ดํ„ฐ ๋Œ€์‹  ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ๋ณ€ํ™”๊ฐ’๋งŒ์„ ์•”ํ˜ธํ™”ํ•˜์—ฌ ์ค‘์•™ ์„œ๋ฒ„๋กœ ์ „์†กํ•ฉ๋‹ˆ๋‹ค.

  4. ์—ฐํ•ฉ ํ‰๊ท ํ™”(federated averaging): ์„œ๋ฒ„๋Š” ๋ฐ›์€ ์—…๋ฐ์ดํŠธ๋“ค์„ ํ†ตํ•ฉํ•˜์—ฌ ์ „์—ญ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•ฉ๋‹ˆ๋‹ค.

Actionable AI

์‹คํ–‰ ๊ฐ€๋Šฅํ•œ/ํ–‰๋™ ์œ ๋„ํ˜• ์ธ๊ณต์ง€๋Šฅ(actionable AI)์€ ๋‹จ์ˆœํžˆ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด ๊ฒฐ์ •๊ณผ ํ–‰๋™์„ ์ง์ ‘์ ์œผ๋กœ ์œ ๋„ํ•˜๋Š” ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ธ๊ณต์ง€๋Šฅ์ด ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ๊ทธ์ณค๋‹ค๋ฉด, ํ–‰๋™ ์œ ๋„ํ˜• ์ธ๊ณต์ง€๋Šฅ์€ ๋ถ„์„๊ณผ ์‹คํ–‰์„ ์—ฐ๊ฒฐํ•˜์—ฌ ์ž๋™ํ™”๋œ ๋ฐ˜์‘๊นŒ์ง€ ์ด๋Œ์–ด๋ƒ…๋‹ˆ๋‹ค.

  • ๊ธฐ์กด์˜ ์ธ๊ณต์ง€๋Šฅ์€ ํŒจํ„ด ๊ฐ์ง€๋‚˜ ๋ชจ๋ธ๋ง์„ ํ†ตํ•œ ์˜ˆ์ธก์— ์ดˆ์ ์„ ๋งž์ท„์Šต๋‹ˆ๋‹ค. "๋‹ค์Œ ๋ถ„๊ธฐ ํŒ๋งค๊ฐ€ 10% ๊ฐ์†Œํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค."

  • ๋ฐ˜๋ฉด ํ–‰๋™ ์œ ๋„ํ˜• ์ธ๊ณต์ง€๋Šฅ์€ ๊ตฌ์ฒด์ ์ธ ํ–‰๋™์„ ์ถ”์ฒœํ•ฉ๋‹ˆ๋‹ค. "๋‹ค์Œ ๋ถ„๊ธฐ ๋งค์ถœ ๊ฐ์†Œ์— ๋Œ€์‘ํ•˜๋ ค๋ฉด ๊ด‘๊ณ  ์ง€์ถœ์„ 15% ์ฆ๊ฐ€ํ•˜์‹ญ์‹œ์˜ค."

์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ๋‹ค์Œ ์„ธ ๊ฐ€์ง€์˜ ์š”์†Œ๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ  ํ™•๋ณดํ•˜๋Š” ๋ฐ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ(real-time data processing): ์‹ค์‹œ๊ฐ„์œผ๋กœ ์œ ์ž…๋˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

  • ์˜์‚ฌ๊ฒฐ์ • ์ž๋™ํ™”(decision automation): ์ธ๊ณต์ง€๋Šฅ์€ ๋ช…ํ™•ํ•˜๊ณ  ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ํ–‰๋™ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

  • HITL, Human-In-The-Loop: ์ธ๊ณต์ง€๋Šฅ์€ ํ–‰๋™์„ ์ œ์•ˆํ•˜๋˜, ์ตœ์ข… ๊ฒฐ์ •์€ ์ธ๊ฐ„์˜ ์Šน์ธ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ธ๊ฐ„์€ ์ œ์•ˆ์„ ๊ฒ€ํ† ํ•˜๊ณ  ์Šน์ธํ•˜๋Š” ์ฒด๊ณ„์ ์ธ ๊ทœ์น™์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์ด๋ฅผ ๋”ฐ๋ผ์•ผ ํ•ฉ๋‹ˆ๋‹ค.

์ž๋™ํ™” ์‹œ์Šคํ…œ(automated system)์€ ์˜์‚ฌ๊ฒฐ์ •๊ณผ ์กฐ์ •์„ ์™„์ „ํžˆ ์ž๋™ํ™”ํ•˜๋Š” ๋ฐฉ์‹์„, ์ฒ˜๋ฐฉ์  ์‹œ์Šคํ…œ(prescriptive system)์€ ์ธ๊ฐ„์—๊ฒŒ ์˜์‚ฌ๊ฒฐ์ •์„ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์‹์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

Human In The Loop

HITL(Human-In-The-Loop)๋Š” ์ธ๊ณต์ง€๋Šฅ ์‹œ์Šคํ…œ์ด ์ƒ์„ฑํ•œ ์ถ”์ฒœ์ด๋‚˜ ๊ฒฐ์ •์— ๋Œ€ํ•ด ์ธ๊ฐ„์˜ ๊ฒ€ํ† ์™€ ์ˆ˜์ • ๊ณผ์ •์„ ํฌํ•จํ•˜๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋งํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ฐ„์˜ ์ „๋ฌธ์„ฑ, ์‹ ๋ขฐ์„ฑ, ์œค๋ฆฌ, ์ตœ์•…์˜ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•œ ๋Œ€์ฒ˜๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  • ํ–‰๋™ ์ด์ „ ๊ฒ€ํ† (pre-action review)

  • ํ–‰๋™ ์ดํ›„ ๊ฒ€์‚ฌ(post-action auditing)

  • ํ™œ๋™์  ํ•™์Šต(active learning)

PreviousChallenges in Training Deep Neural Network and the Latest SolutionsNextOverview on Meta Learning

Last updated 2 days ago